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CONTACT AND CRACK PROBLEMS
FOR AN ELASTIC WEDGE™*

by

F. Erdogan and G.D. Gupta
Lehigh University, Bethlehem, Pa.

Abstract. In this paper the contact and the crack problems for
o an elastic wedge of arbitrary angle are considered. The problem

is reduced to a singular integral equation which, in the general
case, may have a generalized Cauchy kernel. The singularities
under the stamp as well as at the wedge apex are studied and the
relevant stress intensity factors are defined. The problem is
solved for various wedge geometries and loading conditions. The
" results may be applicable to certain foundation problems and to
crack problems in symmetrically loaded wedges in which cracks
may initiate from the apex.

1. INTRODUCTION

Ih conventional contact problems it is generally assumed
that the substrate consists of an'elésffc ha]fjspace‘or a layered
medium-(see [1] for a thorough discussion). With the application
in foundation engineering in mind, in these problems the-main in-
terest has been mostly in the evaTﬁation of the contact p;essure.'
If the external load is not applied .symmetrically, it ié é1so
possible to evaluate the "tilt angle” of the rigid stamp simu-
Jating the structure [1,2]. In practice one may also encpuhter
a certain group of foundation problems in which because of the
nonuniform stiffness of the substrate the structure may again,
.‘tilt éven if the loads are symmetrically distributed. Among these
nonsymmetric foundation problems perﬁaps the simplest one is the

frictionless contact problem for a plane elastic wedge-shaped sub-

strate (Figure 1a). Here the main questions of practical interest

*This work was supported by the National Aeronautics and Space
Administration under Grant NGR 39-007-011 and by the National
Science Foundation under Grant GK-42771X.
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(a) (b)

Figure 1 Geometry of sfamp and crack problems,.



are the contact stress distribution and the value qf the possible
tilt angle for a given app]iedrload. In particular one may be in-
ferested in findfng the location of the app{ied load for which the
étamp (or the structure) would remain vertical, or the angle of ro-

tation of the stamp if the load is symmetrica]]j applied.

It may be noted that there is a group of crack problems for
plane elastic wedges (Figure 1b) the formulation of whith is iden-
tical to that of the contact prob]eﬁs (Figure la). Here the cracked
" wedge is loaded perpendicu?ar to. and away from the net section
8=0, b<r<c and with the application to fracture problems in mind
the main practical interest in the problem is in finding the stress
intensity factors and the net section stress.” In contact as well
as:in crack problems the case of b=0 (Figure 1) is of special in-
terest. Analytically the prob]ém requires special attention due
to the fact that for b>0 the formulation leads to a singuihr iﬁ-
tegral equation with a simple Cauchy singularity whereas for“b=0
the kernel is of the generalized Cauchy type. In the crack prob-
lem (Figure 1b} if the stress intensity factor at b is négative
the crack-1ocated on-0<r<b, 6=0 will close and has to be ignored
in the solution. 1In the rectangular stamp problem shown in Fié-
ure ta if the streﬂgth of the stress sfngu]arity at b'ié positive
-fi.e., if the contact stress becomes ”fensi]e") the problem be-
comes oﬁe of "receding contact" [3] with the cﬁntact area being
also an unknown (see [4] for a simi]ar phenomenon in the axjisym-

metric double contact problems),

In this paper the frictionless contact problem for a plane

elastic wedge is formulated for an arbitrary stamp profile. As
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ekamples the problems for the rectangular (Figure Ta) and the
semicircular (insert in Figure 4a) stamps are considered. The
solution of the crack problem (Figure 1b} is obtained by simply

reinterpreting the results found for the rectangular stamp.

2. FORMULATION OF THE PROBLEM.

Consider a plane elastic wedge.of arbitrary angle 6, - Let
the wedge be subjected to an external Toad P applied thrbUgh‘a
friction]ess.rigid stamp of known profile {(Figures la). The solu-
tion of the problem may be obtained by considering either the:re-
lated biharmonic equation or the Navier's equations under the

following boundary conditions:

Tgg = o,_grg =0, (6 = 93’ D<r<M),. | (1.a,b)
Tpg = 0, (8=0; 0<r<eo), (2)
Gag = 0 (é=0, 0<r<b; c<r<s), | (3.2)
%F uy = g(r), (e=0; b<r<c) | (é-b)
S Cagg(r,0)dr = - P, | | )

where g(r) is a known function and P is. the resultant Toad per unit
thickness. Let o and v refer to the following complex stress and

displacement combinations:

a(r,8) = o, + 0,4,
v(r,8) = &(u, + iug), (02828 , O<r<w). (5.a,b)



Using the MelTlin transform one may easily obtain (see, e.g.[51)

Mirlo] = 2i(s+1) [Ase’S? 1(s+2)6 _ ge-i(s+2)0,

+ B{s+1)e

)
s+1

- ——~[As + B(s+1)e1(5+2)9

Wiryy s e 1(5%2)8) (5 4 p)

where A(s) and B(s)} are unknown complex functions and the Mellin

transform and its inversion are defined by

MEFY = £ "F(r)e® dr,

L S I AT T : | (7.a-¢)

Fr) = 20 Iy-ie

provided the integral in (7a) is cohvergent'and in (7¢c) the strip
of regularity containing the constant vy is selected in Such a way
that (the physically impesed) regularity cﬁnditions at r=0 and at
r=w= are satisfied. In (6) u and k are the elastic cOnstaﬁts of
the wedgé (v is the shéar modulus, «=3-4v for plane strain and

k={3=v)/(1+v) for plane stress, v bheing the Poisson's ratio).

To formulate the problem it is convenient to obtain first
various Green's functions by replacing the mixed boundary condi-

tions (3a) and (3b) by the following concentrated force:
GBH(r’O) = f@(f-t). : (8)

Substitut1n§ from (1), (2) and (8) into (6) we find

s+1

sA(s) = By - - sby(s) = i(sa2)byls),



B(s) = by(s) + iby(s},

s+1 (s+1)(1-c0§280)+1-0052(s+1)eO

_ ft
b](S) T A{s+]) D(s) ' ’
b.(s) = PR (s+1)sin290+51n2(5+1)60
2 ITs+71) 168 i
D(s) = (s+i)2(1—coszeo) - [1-cos2(s+1)8 1. o ae)

If the density function-f=f(t) is given or determined, substituting
from (9) into (6) and inverting, one may obtain the complete solu-
tion of the prob]ém. In particular, from {5b), (6b) and (9) it
follows that

au

2 6, . 1tk ‘
M[Y', ar 1 = " (5+1)b2(5)- . (]0)
Similariy
MIrle] = 2i(s+1)[fe 59 4 21(b1+ib2)(s+1)e1(5+])esihe’
¥ zi(b1-1b2)e"fesin(5+1)e]. (11)
Instead of {8) if we now assume that
_ f{r), (b<r<c),
Ogplrs0) = {
- 0, (O<r<h, c<r<§), _ . (12}

from (3b), (10), (9d), (7¢) and (12) we obtain the following in-

tegral equation to determine the unknown function flr):

: _m :
4y _ c 1 Y+ t st
T:—K*\“‘g(r‘) = fb f(t)dt mf']’-i“’ (F) *
(s+1)s1‘n280+sin2(s+1)eO ' .
* DTsT ds, (b<r<c)( ‘ (13}

In (13) the strip of regularity containing vy is determined

from the behavior of stresses or displacement derivatives as r+0

-5-



and r»®, namely that they vanish at r=~ and at most may have an

integrable singularity at r=0. Let
D(Sk) = O, (k = 'T'Ts ;2,;-'.)9
‘Re(§j_1)<Re(s_j)<y<Re(sj)<Re(st'), (i=1,2,...}. (14)

Thus, one way to evaluate the kernel in (]3) may be to sum the
residues at Sy (k=1,2,...) fof r>t and at S _1 > (kél,Z,.;) for
re<t. Notinglthat (13) gives auB/ar along the iﬁfinite line 8=0,
O<r<w, and the dominant terms for 8ue/ar are of the order |

au au . :
6 ..-(5_1%2) 8 _,.~(s,q+%2)
ar , r -1 ?(T‘<t), é_l"—- r +1 s (T‘?‘t), (15)

the regularity conditions, j.e.,

Bue -0} au@ -1
=2 e, (u<)for ra0; 5zt mrT%, (y2T)for roe (16)

require that Re(s_1)<—1 and Re{s_,)>-1. [If one also notes that -1
is a root of D(s), it is then clear that the strip of regularity
of the inversion integrals for stresses and the displacement deriv-

atives will be
Re(s_j)<Re(s) = y<-1 = Re(s,) | (17)
where s;] is the first root of D{s) to the left of the line Re{s)=-1.

rIn this problem it_is not possible to obtain the roots sk‘in
the closed  form. Hence, the resulting infinite series giving the
"'kernel cannot be properly studied for the nature and separation of
possible singular parts. To investigate the singular behavior of

the kernel it is more convenient to express the inner integral in



(13) in terms of a real integral by letting y=-1 indenting the

contour to the left and defining
st1 = iy, Tog(t/r) = o. | (18)

The integral equation (13) may then be expressed as

26 +sin2e
o)

.

U ) _ (ol i
rg(r) = /. ° F(t)dt[——
e b 2(2802-1+c05260)

—

(ysin26 +sinh28 Y sinpy
f o o} O

o

dyl,

|-

2
coshzeoy-l-y (1-c05290) | ,
(ber<c). (19).

As p»0 or t>r the infinite integral in (19) becomes'divergentJ“
Since the integrand is bounded and continuous everywhere in 0<y<w,
the divergence will be due to the behavior of the integrand at in-
finity and the divergént part of the integral may easily be sepa-
rated by considering the asymptotic behavior of the intégrand as
y+«., Thus, adding and subtracting the asymptotic part of the in-
tegrand to and from the integrand and evaluating the related integ- |
ral, (19) becomes
‘ (28 +sin2g8 )
0 v}
2

+

u -1 ,c 1.
< rolr) = - S of(E)dElS

T+

2{28 “-1+cos20 )
0 , 0

ys1n260+51nh280y

+ 1 - 1)sinpydyl,

2 .
cosh28 y-1-y (1-c05260)

(b<r<c). - (20)
It may easily be shown that for b-0 (20) is an ordinary singular

integra] equation-with a sihple Cauchy singularity. This may be

seen by observing that



1 1T e (-7t n. -1
= 1+% (= -1)"1
rlog(t/r) t [ n+l r
r(r 1) 1
1 t '
= = [1+0(y - 1)1, (21)

In the special case of 8,=", using the relation

fom(coshay—T)sinpydy =3 2e-2a(N+])ysinpydy
n=0 ‘ _
® 2 1 T kil |
=% P = L+ T coth £L (22)
=1 olt(2ma)? o " 23 2a
the inner integral in (20) becomes
@ - sinh2my . . -1 e _ 1
S leoshamy =T 1) sinpydy = 5 coth 5 - = . | (23)

Noting that p=log(t/r) and substituting from (23), it may easily
‘be seen that (20) reduces to the integral equation for the elastic

half plane given by

< 9lr) = - ; IC %é%l dt, (b<r<c), | | (24)

e

which has a closed form solution for any H8lder-continuous g(r} [6].

In another special case where 8 _=2m, (i.e., the plane with a
semi-infinite crack loaded on one flank) again using (22) it may
" be shown that (20) reduces to

2 7 el - - fbcxj_t if , (ber<c). (25)
-Vr

.“w#

If we let
t = p2, r = 52, /Fg(r) = G(s), VEF(t) = F(p)

b =d, c=e | (26)



(25) becomes

-

N

u _ 1 e F : | .
T+ G(S) = = F'rd %_‘E‘l dp (27)

which can again be so1ved in closed form for a given G(s) [6].
For example, if the stamp has a rectangular profile, g{r)=0=G(s),

and the solution (27) satisfying

1,6 flr)dr = - p | | ‘ (28)
hecomes
f(r) = - P , (b<r<c) o (29)

27 (r (/F-VB) (YE-VF) 1%

3. STRESSES ARQUND THE APEX OF THE WEDGE.

As indicated before, after obtaining f(t) by solving (20),
the stresses and the displacement derivatives in the wedge may be
evaluated by means of definite integrals haQing f(t), (b<t<c) as

‘the density function. From the view point of fracture of thé
solid of particular interest is the cleavage stress caﬁ(r,e)
which is known to be singd]ér at the wedge apex r=0 for wedge
angles 6, The inversion of (11) would indicate that for small

values of r the dominant term for the stresses is of the order

s_]+2)

U-‘Nr‘( s ('i,j=?‘,e),

1]
D(S_'I) = 0, Re (S_'l)<'1 . A '(30.a,b)
where s_, is the first root to the left of Re(s)=-1. By examining

(30b) with D(s) as given by (9e) it may\eaéi]y be shown that s_,

is real and



s_q = - ¢ for 0<@_<m,
- O-
-2<s_y<-3/2 for m<é _<2m. - (31)

Thus, for 6 <m the stresses at r=0 are bounded and are of no par-
ticular interest. For 60>wlthey are singular at r=0, (30) gives
the power of singularity, and the residue of the related inversion
integral at 3_1 gives the asymptotic values. After routine manip-

ulations from (11), (12), and (9) we find

2+s F(s )
s -1 . -1 c.p
Tim r (o . +io, ) = - == S UtPF(t)dt, (32)
r0 ro 6o U E b ‘
p = s_1+1,
D’(s_1) = 2[p(1-c05280) - eosianeO],
_'F(s_]) = pefiep(c1+ic2)sihe + (c]-icz)eiesinpe,
¢y = p(]-cosZ@o) + (1-c052peo);
C, = psinZGO + sianeo. (33)
If we define
2 +s_y=u, F(s_4) = Fole) + iF,(8), (34)

the "stress intensity factor" for the cleavage stress at r=0 may

be expressed as

k(6) = 1im r¥% . (r,8) = - (o) £ S0 e (t)dt (35)
o | Ceet? D°(5_,) b | |

Thus, for a given wedge angle 80 the integral in (35) will be the

measure of the intensity of stresses at the apex of the wedge.
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4. THE CASE OF b=0.

In the problem of flat-based stamp shown in . Figure la and
in the crack problem shown in Fiagure 1b, the 1imiting case of
b=0 is of special interést. 'In this case,'as.the crack problem
wouid indicate, the sfngulafity at the end point r=b=0 is that
of a symmétriéa]]y loaded wedge of ang]e'ZBO. In fact, it may
also be shown that in the integral equation (20) part of the
kernel corresponding to the inner integral is not bounded for
all values of r and t 1h the c¢losed interval [0,c], and bécomes
unbounded when r and t approach the end point r=0 simultaneously.
This means that for b=0 the kernel of the singular integfa] equa-
tion (20) is of generalized Cauchy type and the related fundamen-

tal function is of the fo]]owing form:
wit) = tP(c-1t)%, (-1<Re(a,B)<0). " (36)

The characteristic equations'giving the powers o and B are found

to be.

cotTma = 0,

(1+g)sin28  + sin2(1+g)e_ = O, .. (37.a,b)
From (37) it is seen that o and B are real, o=-0.5, B=0 for
0<eo§w/2, and -1<p<0 for 2W>eo>“/2“ For example, B=-0.5 for bo=w,
R==-2/3 for 90=3ﬁ/2,,and B+-1 for eo+2u. In the crack prbb1em
(i.e., 90=2w) B=-1 and it appears that the stresses have a nonin-
tegrable singularity. Since the load is applied at the crack tip

(i.e., b=0) this result is expected.

-1~



5. SOLUTION AND NUMERICAL RESULTS.

The integral equatioh {20) subject to the condition {4) can
easily be solved numerically once the stamp.profTTe g(r) is speci-
fied (for the numerical technique see, for example, [7,8])}. Most
of the resu]fs given in this section refer to flat stamp and crack
problems shown in Figuréé la and 1b, which are considered to be of
greater practical interest. However, sdme_resu]ts on the half-
cylinder stamp problems shown in the insert of Figureé 4a will

also be given.

In the crack and flat stamp prob]ems, the problem may be poéed
in one of two ways. In the first one may specify the external load
P and the distance of its line of application d. 1In this case,
~generally there would be a small rotation e; of the stamp {or the
half wedgé ﬁway from the net section bc). This quantity may be

cqmputed'by using the following moment equilibrium condition:

fbcf(r)rdr = + Pd o (38)

where P is the magnitude of the applied load and noting that
f(r)=aee(r,0), + sign refers to the crack and - refers to the

stamp probliem.

‘In the second gfoup of problems one may specify the load P
and the angle of rotation €, In this case d is unknown and is
égain determined from (38). The practical problem here of course -
~is the determination of d for a givén load and no rotation
(i.e., eo=0).' In both of these problems the input functjon in {20)
is (see (3b)) |

-12-
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gl{r) = u (r 0) = ¢ o0? (b<r<c). (39)

In the flat stamp and crack problems for b>0 the fundamental
function of the integral equation and the sclution may be expressed

as
w(t) = [(c-t)(t-b)17%, £(t) = F{t)w(t), (b<t<c) (40.a,b)

where F(t) is bounded in b<t<c. 1In this case, in addition to the
contact pressure -f{r) in stamp and the net section stress F(f)
in crack problems, the quantities of physical interest are d or
€, the stress intensity factors defined by
k(b) = Tim vZ{r-b) f(r), k(c) = 1im VZ(c-r) f(r), (41)
r+b r+c
~and the power w and the strength k(8) of the stress s1ngu1ar1ty

at the wedge apex for ) R in stamp problems.

Recalling the definition of. stress intensity factor at r=0
for 6,7, (see (32~35))}, we define a normalized stress intensity

factor ko by

k{8) Tim r¥(o  +ic
- r->0

re ee)

F1(e)+iF2(e)

5 S eyt

- D°(s_;) b
F.{e)+iF,(9) w- :
= - - wD'(S?l) P(Céb) “or | (4z)

In the case of b=0 the fundamental function of the integral
equation (20) is given by (36) where o and B are determined from

(37). In this problem too the solution may be expressed by {40b)

-13-



with F(t) being again a bounded‘funétion in O<r<c. .In this case
the stress 1ntensjty factor at r=0 is defined by

k(b) = k(0) = Tim vZr Bf(r). | | (43)

r->0 :

‘Some calculated results for b>0 and e, =0 for geometries shown
in Figures la and 1b are given in Table 1. In this table the stress
intensity factors k(c) and k(b) defined by (41) and (43) are pos-
ﬁtive in the c¢rack problem and are_negative in the stamp problem.

The normalizing factor for k(c) and k(b) are defined by

kn - P s for b>0,

| /a8 _
P .

kn_= Tr—a—1—+'§ , for b=0, a=(c-b)/2. (44.a,b)

fh& table also shows the powers of singularity w and B {see (43),
{(40b) and (36)). The values of w refer only to b>0 case where
w=0 for 0<6 <w, w=0.5 for 6 =2%, and O0<w<0.5 for =<8 <2w. -The
~valués of B refer only to b=0 case. Note that 'as required by the
physics of the problem B(eo)=-w(260). Thus, the stress intensity
measure kO is nonzero only for w>0 (i.e., for eo>n,b>o), and k(b)

is nonzero only for g<0{(i.e., for eo>w/2, b=0).

For ao=0 the values given for the distance d indicateé that,
aé-expected, d>(c+b)/2 as {c+b)+= for a constant a=(c-b)/2,
d>(c+b)/2 for 6 _<m, d=(c+b)/2 for 6 _=r and d<(c+b)/2 for o >m,
where d is the distance at which the resultant load P should be
applied for zero rotation of.the structure (Figure 1a) or the half-
wedge (Figure 1b). Another physically expected important phenom-

enon may be observed from the results given for Bo=60°; It is

-14-



Table 1. The results for flat stamp and crack problems, for
b>03 £ -0
N b/a c/a d/a k(c)/k, | kib)/k, -k,
. 10 12 11.277 | 1.5486 0.4414
8o=60" 8 10 9.335 | 1.6632 0.3225
0=0 6 8 7.424 | 1.8356 0.1428
5 7 6.486 | 1.9579 0.0151
4 6 5.569 | 2.1183 -.1518
4 6 5.117 | 1.2265 0.7583
6,=900 2 4 3.192 | 1.3634 0.5958
w=0 1 3 2.279 | 1.5151 0.4003
0.5 |2.5 1.858 | 1.6433 | 0.2238
B=0 0 2 1.476 | 1.8436 +0
2 4 3.037 | 1.0684 0.9206
6,=120° 1 3 2.056 | 1.1004 0.8731
8= 0.5. (2.5 1.577 | 1.1319 0.8154
0.2 |2.2 1.307 1.1636 0.7350
B=-0.38427 0 2 1.136 | 1.2005 0.8993
8,=150° 0.5 |2.5 1.507 | 1.0121 0.9817
| =0 0.2 2.2 1.210 | 1.0153 0.9720
" [=-0.48778 0 2 1.014 | 1.0198 0.9958
68,=180° 0 2 1.0 1.0 1.0
w=0,8=-0.5
8o=2100 0.5 |2.5 1.496 | 0.9930 1.0118 | 2.821
w=0.28572 0.2 |2.2 1.194 { 0.9911 1.0190 - 4.774
6=-0.61749 0 2 0.988 | 0.9852 0.4892
0,=2400 1 3 1.982 | 0.9696 1.0446 2.215
v=0.38427 0.5 |2.5 1.475 | 0.9595 1.0705 2.862
ik 0.2 |2.2 1.185 | 0.9483 1.1166 3.835
R=-0.66061 0 2 0.939 | 0.9255 0.4940
2 4 2.974 | 0.9540 1.0592 1.779
6,.=270° 1 3 1.960 | 0.9323 1.1007 2.315
=0, 45552 0.5 |2.5 1.443 |.0.9099 1.1607 2.917
0.2 (2.2 1.120 | 0.8842 1.2716 3.815
8=:2/3 0 2 0.860 | 0/8313 0.7361
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seen that at a value b=Ka, 4<K<5 the sign of the stress intensity
factor k(b) changes (meaning that in the stamp problem the wedge |
"bends" and the contact stress around r=b becomes "tension" and

in the crack problem it becomes compression). fhe techniﬁue de-
scribed in this paper is also applicable for this case. The solu-
tion of the crack problem is quite straightforward and ﬁay be ob-
tained by using the forhu]ation given in this paper'provided one
lets b=0 (i.e., the crack 0<r<b is now closed} and B8=0 at r=0,
with the support of the integral equation (20) being (0,c). The
stamp problem on the other hand, is somewhat different and has

to be treated as a "receding contact problem" with thé_cohtact
area c>r>b0 as an addjtional*unknown determined from the cdndition
that the contact stress at r=bo, (b0>b) vanishes (see_the 1ést ex-

ample given in this paper).

Soﬁe sample results for the contact stress (or the net section
stress) f(r) are given in Figures 2 and 3. In both cases the angle
of rotation €, is zero and the corresponding distance d of the
line of load application may be found in Table 1. "Figure 2 shows
the contact stress forleo=90°, bzo; and Figure 3 show the same

for b=0 and for various values of the wedge angle 6 .

The results for a symmetrically loaded stamp (i.e., d=(c+hy2)
in the more interesting case of b=0 are shown in Table 2. In this
problem one of the primary unknowns is the rotation €, which is

given in the third column. Here the normalizing angle e is defined

by

-16-



f(r)/(P/ra)

"Figure 2

Contact (or net secti

wedge (bz0).

on)} stress for a 90-degree



f(r)/(PhrG) |

r/a

Figure 3 Contact (or net section) stress for an elastic
wedge (b=0). :



Table 2. The results for the symmetrically loaded stamp or'
crack problem, b=0, d=c/2=a. .

' T.5%8
k{c) \ k({0)
S €0/ € K ( a) kn
902 0 - -0.4727 0.6486 .
120 0.38427 -0.0967 0.9132 1.284
240° 0.66061 0.0373 1.0445 0.449
270° 0.66667 0.0829 1.1010 0.613
. - {(Q+e)pP '
e Foa (45)

| The nprma1fzation factor kn for the stress intensity factors
k{0) and k(c) shown in the table is given by (44a) i.e., kn=P/wJE.
The.resu1ts giveh in the table corresponds to the stamp problem
where P is the magnitude of the applied (compressive) load, and
eo>0 means that the stamp rotates in the positive 8 direction
shown in Figure 1a. Only the results given for eo<ﬁ are valid

for the crack problems. It should be noted that hHere even though
one is dealing with the contact problem for a hompgeneous-medium,
for b=0 ahd-eo>w one obtains a stress singularity with a ﬁower
greater than 0.5 which is the strongest attainable power in notch

and crack problems.

The results for a semi-circular rigid stamp are given in
Tables 3 and Figure 4. 'The normalizing stress intensity factor

kn which appearsin the table is defined by

K, = VZTEBT 4u/(1+c). - | (46)
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Figure 4 The variation of the resultant load P and its
distance d with the contact area for a semi-
circular stamp. '



The constant ko which is the measure of the strength of stress
singu1arity at the wedge apex for 50>ﬁ is again defined by (42) .
In fhe example it is assumed that b=R=constant and‘the unknowns
¢ and d are determined from the force and moment equilibrium:
conditions (4) and (38). For the special case'of 6, =T the solu-

tion is given by

Table 3. The results for the semicircular rigid stamp, b=R.
9 b/R| c/R d/R 1tep k(b)/k K
0 4uR n 0
1 1.1 | 1.0338| 0.01115| 0.04596
5 =90° 1. 1 1.25 | 1.0862| 0.06505 0.1027
1 1 1.50 [ 1.1777| -0.2379 0.1752 |
1 1.1 1 1.0333| 0.01187| 0.05055 | 0.01166
§ =270 1 1.25 | 1.0830 0.07485 0.1282 | 0.07179
° 1 1.5 | 1.1652 0.3033 0.2620 0.2806
9=180 1 1.1 | 1.0333| 0.01178 0.05

p(r) = & &b (14 L2y (Eohy (47)

T1+k

The resultant Jjoad P and its distance from the apex d are shown
in Figures 4a and 4b, respectively. The results do not appear to‘
be significantly different from those obtained for the half plane.
Hence ﬁo extensive numerical work was carried out regarding this

example.

The receding contact problem for small wedge angles is con-
sidered as a last example. The results for a 60-degree wedge acted
upon by a flat-ended rigid stamp are given in Table 4. The prob-

lem has some anomalous features. In thislcase the index of the

18



singular integral equation is zero and the solution is of the

following form
FOr) = F(r)[(r-b)/(c-r)1%, (b<r<c) . (48)

where F(r) is again bounded in b<r<c. In the numerical example,
in order to avoid the iteration to determine b the problem is

solved for a constant stamp rotation, i.e.,

Table 4. The results for a flat sEamp on a 60-degree wedge,
f{r) = F(r)I(r-b)/(c-r)172. . 4-

b/c alc are 103 /e, | KL\ /e
0.7 | 0.15000| o0.92401| 20.43 | 1.619 | 48.956
0.7025 | 0.14875| 0.92466| 15.45 |1.627 | 64.708
0.7050 | 0.14750{ 0.92530| 10.41 | 1.634 | 96.088
0.7075 | 0.14625| 0.92595| 5.283 |1.641 | 189.27
0.7100 | 0.14500| 0.92660| 0.08104 |1.649 | 12339.8
0.7104 | 0.14480| 0.92670 +0 | 1.650 S

: g(r)=eo=constant, and.for each given b the load P is determined.
The results are shown in Table 4. The normalization constants

which appear in the tab}e are defined by
e =-|_+£P,P =E.C_€. (49)

A close examination of the results given in the table wou]d indi-
cate_thaf'from the unloaded state P=0, so=0, b/c=0 {c=constant} as
the load P is increased for a constant small rotation €, b/c ih-
creases. It appears that there is a limit b/c;0.7104 beyond which
the contact area cannot be reduced any further; At this value

of b,e ~0 for any fixed load P. From (20) and (28) with g(r)=eo=0
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it is seen that the unknown function is f{r)/P and b=0.7104c is
really independent of the magnitude of the applied load P. This
conclusion is typical of the general receding contact problems.
From other trial solutions it was also found that it is not pos-
sible to obtain any so}ution in the form of (48) (i;e., with a
sharp stamp corner at ¢ and smooth contact at b) for go<0. This,

of course, is the reéu]t one would expect physically.
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